1:25 pm – 1:55 pm

On the critical numbers of a fixed finite abelian group G only concerning its generating subsets

James Arps

A subset A of a finite abelian group G is called generating if every element of G can be expressed as the combination of finitely many elements of A and their inverses. For a given integer b, the capped b-critical number of G, $\chi(G,b)$, is defined as the minimum number m for which the b-fold sumset of all generating subsets of G with size greater than or equal to m generate the whole group G. We are interested in finding the value of $\chi(G,b)$ for any group G and positive integer b, where

$$\chi(G,b) = \min\{m \mid |A| \leq G, (A) = G, |A| \geq m \implies bA = G\}.$$

Here, we prove a concrete upper bound for this value in relation to the similar quantity $\chi(G,0,1)$, and establish equality of $\chi(G,b)$ to $\chi(G,0,1)$ for a class of groups for which $\chi(G,0,1) = n$.

1:37 pm – 1:47 pm

What’s New With You? About the maximum size of a weak $(k,1)$-sum-free subset of an abelian group

Erik Wendt

The maximum size of a subset A of G for which the sum of k distinct elements in A does not equal the sum of l distinct elements in A is denoted by $\mu(G,(k,l))$. We are interested in finding exact values for $\mu(Z_m,(k,l))$ for cyclic and non-cyclic groups, as well as finding upper bounds for $\mu(m,(k,l))$, values of m such that $\mu(Z_m,(k,l)) > m$ for all groups with order greater than n, where $n,m \in \mathbb{N}$. Here, we find lower bounds for $\mu(G,(k,l))$ for certain non-cyclic groups, find equality between $\mu(G,(k,l))$ and $\gamma(G,(k,l))$ in some specific cases, and find upper bounds for $\mu(m,(k,l))$ in some cases of prime order.

1:50 pm – 2:00 pm

When the size is not large enough

Adrian Navarro

We know from Corollary 1.4 and Theorem E.1 that there is some subset A of Z_m, if n is even, of exactly half the size of the group such that $|A| = G$, for any $h > 3$. It is easy to see, for the subset A of all even integers in Z_m, $|A| = A$. In this paper we establish the additional result: the only two subsets A of size $\chi(Z_m,3)$ for which $|A| = G$ will be the subgroup already mentioned and its complementary coset: the subset of all odd numbers in Z_m.

2:02 pm – 2:12 pm

On Restricted Sumsets χ^-

Michael Moore

χ^- is the minimum value of m for which every m size subset of G has $\{0,1\} \subseteq G$. For $G \cong Z_m$, we are interested in finding χ^- for odd values of m and an even s. We found χ^- for odd values of $n < 20$ for $s = 3, 4, 5, 6, 7, 8$ and proved a general formula for non-generating sumsets. This creates a lower bound for χ^- and helps establish a pattern between different values of s.