Math Colloquium

THURSDAY, JANUARY 23RD, 11:30 A.M.
SCIENCE CENTER 300

Student Research with Professor Bajnok
Ryan Matzke and Wes Galbraith, Presenters

What can subtractions add to sums?
Béla Bajnok and Ryan Matzke*

The origins of additive combinatorics can be traced back to Cauchy (a.k.a. the pioneer of analysis) who in 1813 determined the minimum possible size ρ of the 2-fold sumset of an m-subset of the cyclic group of prime order p:

$$\rho(\mathbb{Z}_p, m, 2) = \min\{p, 2m - 1\}.$$

The full generalization of Cauchy’s result, the minimum size of the h-fold sumset of an m-subset of any finite abelian group G, was unknown for almost 200 years until a group of French mathematicians determined $\rho(G, m, h)$ for arbitrary G, m, and h.

A variation of this famous result considers spans rather than subsets (that is, elements can be added or subtracted). In the present work, the authors aim to find $\rho_\pm(G, m, h)$; in particular, they investigate situations where $\rho_\pm(G, m, h)$ agrees with $\rho(G, m, h)$.

On Minimum Restricted Sumset Size in Finite Abelian Groups

Authors: Bajnok, Bloom, and Galbraith

Presenter: Wes Galbraith

Given a subset A of a finite abelian group G, the h-fold restricted sumset of A is the set whose elements are sums of exactly h distinct elements of A. The minimum h fold restricted sumset size over all m-subsets of G is denoted $\rho^r(G, m, h)$. A good upper bound has already been attained on $\rho^r(G, m, h)$ in the case that G is cyclic. In this talk, we define and evaluate the success of a generalization of this upper bound in the case that G is of rank two and $h = 2$.

Lunch will be available for colloquium participants after the talk.

Sponsored by EPACC and the Gettysburg College Math Department